
Code Complete: A Practical
Handbook of Software
Construction

By Steve McConnell

Page 1/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419img-b734&url=https://books.kim

Book summary & main ideas

MP3 version available on www.books.kim
Please feel free to copy & share this abstract

Summary:
Code Complete: A Practical Handbook of
Software Construction by Steve McConnell
is a comprehensive guide to software
construction. It covers topics such as
design, coding, debugging, testing,
refactoring and more. The book provides
detailed advice on how to write better code
and improve the quality of your software
projects. It also includes numerous
examples from real-world projects that
illustrate best practices in action.

The book begins with an introduction to
the principles of good software
construction and then moves into specific
techniques for improving code quality.
Topics covered include designing for

Page 2/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

maintainability, writing effective comments,
using defensive programming techniques,
avoiding common errors and pitfalls when
coding in various languages (such as
C++), understanding object-oriented
design principles and patterns, refactoring
existing codebases for improved
readability and performance, unit testing
strategies for ensuring correctness at all
levels of development process etc.

In addition to providing practical advice on
how to write better code faster and more
efficiently Code Complete also offers
guidance on managing large scale
software projects including tips on project
planning & estimation; team dynamics;
communication between developers &
stakeholders; risk management; version
control systems etc.

Overall Code Complete is an invaluable
resource for any developer looking to

Page 3/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

improve their skills or take their career to
the next level. With its clear explanations
backed up by real world examples it's sure
to be a valuable reference tool no matter
what stage you are at in your journey
towards becoming a master coder.</p

Main ideas:
#1. Understand the Problem: Before
beginning to code, it is important to
understand the problem and the
requirements of the solution. This
includes researching the problem
domain, gathering requirements, and
creating a design.

Before beginning to code, it is important to
take the time to understand the problem
and its requirements. This includes
researching the problem domain,
gathering information about what needs to
be done, and creating a design for how
best to solve it. Taking this step can save

Page 4/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

time in the long run by ensuring that you
have all of the necessary information
before starting coding.

Researching the problem domain involves
learning more about what is needed from a
solution. This could include understanding
any existing solutions or technologies
related to solving this particular issue.
Gathering requirements means finding out
exactly what needs to be done in order for
a successful solution; this could involve
talking with stakeholders or users who will
use your software.

Finally, creating a design helps ensure that
you are able to create an effective
solution. A good design should consider
factors such as performance, scalability,
maintainability, security and usability when
deciding on how best approach solving the
problem at hand.

Page 5/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#2. Design for Change: Designing
software with change in mind is
essential for creating maintainable
code. This includes using abstraction,
modularity, and encapsulation to create
a flexible design.

Designing for change is an important
concept in software development. It
involves creating a design that can easily
be adapted to changing requirements and
technologies over time. This includes
using abstraction, modularity, and
encapsulation to create a flexible design
that can accommodate changes without
having to rewrite large portions of code.

Abstraction allows developers to focus on
the essential features of their program
while hiding unnecessary details from
view. Modularity divides the system into
smaller components which are easier to
maintain and modify when needed.

Page 6/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Encapsulation helps keep related data
together so it's easy to find and update
when necessary.

By designing with change in mind,
developers can create more maintainable
code that will stand up better against
future changes or updates. This makes it
easier for teams to quickly adapt their
programs as new technologies emerge or
customer needs evolve.

#3. Use Defensive Programming:
Defensive programming is a technique
used to anticipate and prevent errors.
This includes using assertions,
validating inputs, and handling errors
gracefully.

Defensive programming is a technique
used to anticipate and prevent errors. This
involves using assertions, validating
inputs, and handling errors gracefully.

Page 7/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Assertions are statements that check for
conditions that should never occur in the
programs execution. If an assertion fails, it
indicates there is a bug in the code which
needs to be fixed. Validating inputs
ensures that data received from external
sources meets certain criteria before being
processed by the program. Finally,
handling errors gracefully means providing
meaningful feedback when something
goes wrong so users can understand what
happened and how to fix it.

By implementing defensive programming
techniques into your codebase you can
reduce bugs and improve reliability of your
software applications. It also helps make
debugging easier as potential issues are
identified early on during development
rather than after deployment.

In addition to these benefits, defensive
programming encourages developers to

Page 8/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

think more carefully about their code
design decisions since they must consider
all possible scenarios when writing their
programs.

#4. Write Code for People: Writing
code for people is important for
creating maintainable code. This
includes writing code that is readable,
self-documenting, and consistent.

Write Code for People: Writing code for
people is an important part of creating
maintainable code. This means writing
code that is readable, self-documenting,
and consistent. Readability involves
making sure the code is easy to
understand by using meaningful variable
names, comments where necessary, and
proper indentation.

Self-documenting code refers to writing
clear and concise statements that explain

Page 9/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

what the program does without needing
additional comments or documentation.
Consistency in coding style helps make it
easier to read and debug programs as well
as reducing errors due to typos or
misunderstandings.

By following these principles when writing
your code you can ensure that your
programs are more maintainable over time
which will save you time in the long run.

#5. Use Structured Programming:
Structured programming is a technique
used to create code that is easier to
read and maintain. This includes using
control structures, functions, and data
structures to create a logical flow.

Structured programming is a technique
used to create code that is easier to read
and maintain. This involves breaking down
the code into smaller, more manageable

Page 10/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

pieces by using control structures,
functions, and data structures. Control
structures are used to define how the
program should flow from one step to
another. Functions are used for specific
tasks within the program such as
input/output or calculations. Data
structures provide an organized way of
storing information so it can be easily
accessed when needed.

Using structured programming makes it
easier for developers to understand what
their code does and how it works. It also
helps them identify any potential problems
with their code before they deploy it in
production environments. Structured
programming also allows developers to
reuse existing components instead of
having to write new ones each time they
need something similar.

Overall, structured programming provides

Page 11/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

a logical approach for creating software
that is easy to read and maintain over
time.

#6. Use Object-Oriented
Programming: Object-oriented
programming is a technique used to
create code that is easier to maintain
and extend. This includes using
classes, objects, and inheritance to
create a modular design.

Object-oriented programming (OOP) is a
powerful technique for creating software
that is easier to maintain and extend. OOP
allows developers to create code that can
be reused in different contexts, making it
more efficient and cost effective. It also
helps reduce the complexity of large
projects by breaking them down into
smaller components.

At its core, OOP revolves around the

Page 12/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

concept of objects. Objects are
self-contained pieces of code that contain
both data and methods which act on that
data. By using classes, objects can be
created from templates which define their
properties and behavior. This makes it
easy to create multiple instances of an
object with similar characteristics.

Inheritance is another key feature of OOP
which allows developers to reuse existing
code without having to rewrite it from
scratch each time they need a new class
or object. Inheritance works by allowing
one class or object to inherit the properties
and behaviors defined in another class or
object, thus reducing development time
significantly.

Finally, encapsulation ensures that all
changes made within an object remain
contained within itself rather than affecting
other parts of the program's structure. This

Page 13/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

helps keep programs organized while
ensuring any modifications do not have
unintended consequences elsewhere in
the system.

#7. Test Early and Often: Testing is
an essential part of the software
development process. This includes
writing unit tests, integration tests, and
system tests to ensure the code is
working as expected.

Testing early and often is a key principle of
software development. By testing as soon
as possible, developers can identify any
issues with the code before they become
too difficult to fix. This helps ensure that
the final product meets all requirements
and works correctly in production.

Unit tests are written to test individual
components or functions of an application.
These tests should be written first, so that

Page 14/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

any changes made during development
dont break existing functionality.
Integration tests are then used to check
how different parts of the system interact
with each other, while system tests verify
that the entire application behaves as
expected.

By testing frequently throughout the
development process, developers can
quickly identify any problems and address
them before they become more serious
issues down the line. This helps reduce
costs associated with debugging later on
in the project lifecycle.

#8. Refactor Mercilessly: Refactoring
is a technique used to improve the
design of existing code. This includes
restructuring code, removing
duplication, and simplifying logic to
make the code easier to read and
maintain.

Page 15/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Refactoring is a technique used to improve
the design of existing code. This involves
restructuring code, removing duplication,
and simplifying logic in order to make the
code easier to read and maintain.
Refactoring mercilessly means that
developers should be constantly looking
for ways to improve their code by
refactoring it whenever possible. This
could include reorganizing functions or
classes, eliminating redundant variables or
functions, and making sure that all parts of
the program are as efficient as possible.

The goal of refactoring is not only to make
the code more readable but also more
maintainable over time. By taking a
proactive approach towards improving
your existing codebase you can ensure
that any changes made will be easy to
understand and implement without
introducing new bugs into your system.
Additionally, refactoring can help reduce

Page 16/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

technical debt which can save time and
money in the long run.

#9. Use Design Patterns: Design
patterns are reusable solutions to
common software design problems.
This includes using creational,
structural, and behavioral patterns to
create a flexible and maintainable
design.

Design patterns are an invaluable tool for
software developers. They provide a way
to solve common design problems in a
consistent and efficient manner, allowing
developers to focus on the unique aspects
of their project rather than reinventing the
wheel each time they encounter a
problem. Design patterns can be used to
create flexible and maintainable designs
that are easy to understand and modify as
needed.

Page 17/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Creational patterns allow objects to be
created in different ways while still
maintaining consistency. Structural
patterns help define relationships between
classes or objects, making it easier for
them to interact with one another.
Behavioral patterns describe how classes
or objects communicate with each other,
providing flexibility when changes need to
be made.

Using design patterns is not only beneficial
from a development standpoint but also
from an organizational perspective. By
having well-defined solutions available,
teams can quickly identify potential issues
before they become major problems down
the line.

#10. Optimize Later: Optimizing code
should be done after the code is
working correctly. This includes using
profiling and benchmarking to identify

Page 18/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

areas of the code that can be improved.

Optimizing code should be done after the
code is working correctly. This idea, known
as optimize later, suggests that developers
should focus on writing correct and
maintainable code first, then optimize it for
performance once the basic functionality
has been established. By doing this,
developers can ensure that their code
works properly before attempting to
improve its speed or efficiency.

Profiling and benchmarking are two
techniques used to identify areas of a
program where optimization may be
beneficial. Profiling involves running the
program with special tools which measure
how much time each part of the program
takes to execute. Benchmarking involves
comparing different versions of a program
against one another in order to determine
which version performs better.

Page 19/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

By following an optimize later approach,
developers can ensure that their programs
are both functional and efficient. This
allows them to create software that meets
user needs while also providing good
performance.

#11. Reuse Existing Code: Reusing
existing code is an effective way to
reduce development time. This includes
using libraries, frameworks, and open
source code to create a more efficient
solution.

Reusing existing code is an effective way
to reduce development time and increase
efficiency. By utilizing libraries,
frameworks, and open source code,
developers can create solutions that are
more robust and reliable than if they had
written the code from scratch. This
approach also allows for faster debugging

Page 20/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

of any issues that may arise during
development.

Using existing code has many advantages
over writing new code from scratch. It
saves time by eliminating the need to write
out all of the necessary functions or
classes needed for a project. Additionally,
it reduces errors since much of the work
has already been done by other
developers who have tested their own
projects extensively.

Finally, reusing existing code helps ensure
compatibility with other systems since
most libraries and frameworks are
designed to be compatible with multiple
platforms. This makes it easier for
developers to integrate their applications
into larger systems without having to worry
about compatibility issues.

#12. Automate Repetitive Tasks:

Page 21/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Automating repetitive tasks is an
effective way to reduce development
time. This includes using scripts, tools,
and build processes to automate
common tasks.

Automating repetitive tasks is an effective
way to reduce development time. This
includes using scripts, tools, and build
processes to automate common tasks.
Scripts are used to automate the execution
of a set of commands or instructions that
would otherwise have to be performed
manually. Tools can be used for
automating certain aspects of software
development such as code generation,
testing, debugging, and deployment. Build
processes provide a framework for
automating the compilation and linking of
source code into executable programs.

By automating these types of tasks
developers can save time by not having to

Page 22/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

perform them manually each time they
need to be done. Automation also helps
ensure consistency in results since it
eliminates potential human errors that
could occur when performing manual
operations. Additionally, automation allows
developers more flexibility in their workflow
since they don't have to spend as much
time on mundane tasks.

#13. Manage Resources: Managing
resources is an important part of the
software development process. This
includes using memory management
techniques, thread synchronization,
and resource pooling to ensure
resources are used efficiently.

Managing resources is an essential part of
software development. It involves using
memory management techniques, thread
synchronization, and resource pooling to
ensure that resources are used in the most

Page 23/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

efficient way possible. Memory
management techniques involve allocating
and deallocating memory for different
tasks as needed. Thread synchronization
ensures that multiple threads can access
shared data without interfering with each
other's operations. Resource pooling
allows developers to reuse existing
resources instead of creating new ones
every time a task needs them.

These techniques help developers create
more efficient code by reducing the
amount of wasted resources or
unnecessary overhead associated with
certain tasks. By managing their resources
properly, developers can also reduce the
risk of errors due to incorrect usage or
overuse of system resources.

In addition to these technical
considerations, it is important for
developers to consider how they will

Page 24/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

manage their own personal time and
energy when working on a project.
Properly managing ones own work
schedule and taking regular breaks can
help prevent burnout and ensure that
projects are completed on time.

#14. Use Source Code Control:
Source code control is an essential part
of the software development process.
This includes using version control
systems to track changes, manage
branches, and collaborate with other
developers.

Source code control is an essential part of
the software development process.
Version control systems allow developers
to track changes, manage branches, and
collaborate with other developers in a
secure environment. By using source code
control, teams can ensure that their work
is properly documented and organized for

Page 25/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

future reference.

Version control systems also provide a
way to roll back changes if something
goes wrong or if there are conflicts
between different versions of the same file.
This helps prevent costly mistakes from
being made and allows teams to quickly
resolve any issues that arise during
development.

Finally, source code control provides an
easy way for multiple people to work on
the same project at once without having to
worry about overwriting each other's work.
This makes it easier for teams to stay
organized and ensures that everyone has
access to the most up-to-date version of
the project.

#15. Debugging: Debugging is an
essential part of the software
development process. This includes

Page 26/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

using logging, tracing, and debugging
tools to identify and fix errors in the
code.

Debugging is an essential part of the
software development process. It involves
using logging, tracing, and debugging tools
to identify and fix errors in the code.
Debugging can be a tedious task that
requires patience and attention to detail.
However, it is necessary for ensuring that
the code works as expected and meets all
requirements.

Logging helps developers track what their
program does while running by recording
events such as when functions are called
or variables are changed. Tracing allows
developers to follow how data flows
through their program from start to finish
so they can pinpoint where errors occur.
Finally, debugging tools provide features
like breakpoints which allow developers to

Page 27/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

pause execution at certain points in order
to inspect values or step through code
line-by-line.

By utilizing these techniques, developers
can quickly identify problems with their
programs before they become major
issues down the road. This saves time and
money by avoiding costly rework later on
in the development cycle.

#16. Estimate Carefully: Estimating
is an important part of the software
development process. This includes
using techniques such as story points,
velocity, and planning poker to
estimate the size and complexity of
tasks.

Estimating is an essential part of the
software development process. It involves
using techniques such as story points,
velocity, and planning poker to accurately

Page 28/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

assess the size and complexity of tasks.
Estimation helps developers plan their
work more effectively by providing a better
understanding of how long it will take to
complete a task or project. Additionally,
accurate estimates can help teams set
realistic deadlines for projects and ensure
that resources are allocated appropriately.

Story points are used to estimate the
relative size and complexity of tasks in
comparison with other tasks within a
project. Velocity is used to measure how
much work has been completed over time,
allowing teams to track progress against
estimated timelines. Planning poker is a
technique where team members use cards
with numerical values on them to come up
with an agreed-upon estimate for each
task.

Accurate estimation requires careful
consideration of all factors involved in

Page 29/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

completing a task or project including
technical difficulty, resource availability,
dependencies between tasks, risk
assessment and any external constraints
that may affect completion timescales. By
taking these into account when estimating
tasks or projects developers can create
more reliable plans which will lead to
successful outcomes.

#17. Manage Requirements:
Managing requirements is an important
part of the software development
process. This includes using
techniques such as user stories, use
cases, and acceptance criteria to
ensure the requirements are met.

Managing requirements is an essential
part of the software development process.
It involves using techniques such as user
stories, use cases, and acceptance criteria
to ensure that all requirements are met.

Page 30/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

User stories provide a high-level overview
of what needs to be done in order for the
software to meet its goals. Use cases
provide more detailed descriptions of how
users will interact with the system and
what they should expect from it.
Acceptance criteria define specific
conditions that must be satisfied before a
feature can be considered complete.

These techniques help developers
understand exactly what needs to be done
in order for their product to meet customer
expectations. They also help identify any
potential issues or gaps in functionality
early on so they can be addressed before
too much time and effort has been
invested into developing something that
wont work as expected.

By managing requirements effectively,
developers can create better products
faster by ensuring that all necessary

Page 31/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

features are included and working
correctly from the start.

#18. Manage Technical Debt:
Technical debt is a term used to
describe the cost of maintaining code.
This includes using techniques such as
refactoring, code reviews, and
automated tests to reduce the amount
of technical debt.

Managing technical debt is an important
part of software development. Technical
debt refers to the cost associated with
maintaining code, such as refactoring,
code reviews and automated tests.
Refactoring involves restructuring existing
code in order to improve its readability and
maintainability without changing its
functionality. Code reviews involve having
a team of developers review each other's
work for errors or potential improvements.
Automated tests are used to ensure that

Page 32/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

changes made do not break existing
features or introduce new bugs.

By managing technical debt, teams can
reduce the amount of time spent on
maintenance tasks and focus more on
developing new features. This helps keep
projects running smoothly and efficiently
while also reducing costs associated with
fixing bugs or making changes later down
the line.

Steve McConnells book Code Complete: A
Practical Handbook of Software
Construction provides detailed guidance
on how to manage technical debt
effectively. It covers topics such as
refactoring techniques, best practices for
writing clean code, strategies for
debugging complex problems, and tips for
improving overall productivity.

#19. Manage Quality: Quality is an

Page 33/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

important part of the software
development process. This includes
using techniques such as code
reviews, static analysis, and automated
tests to ensure the code is of high
quality.

Managing quality is an essential part of the
software development process. Quality
assurance techniques such as code
reviews, static analysis, and automated
tests are used to ensure that the code
produced meets a certain level of quality.
Code reviews involve having other
developers review your code for errors or
potential improvements. Static analysis
involves using tools to analyze source
code for potential problems before it is
compiled and run. Automated tests are
used to test the functionality of the
application after it has been built.

These techniques help identify any issues

Page 34/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

with the code early on in the development
process so they can be addressed quickly
and efficiently. This helps reduce costs
associated with fixing bugs later on in
production when they may have more
serious consequences. Additionally, these
practices help ensure that applications
meet customer requirements by providing
high-quality products.

#20. Manage Project Risks:
Managing project risks is an important
part of the software development
process. This includes using
techniques such as risk management,
contingency planning, and issue
tracking to identify and mitigate risks.

Managing project risks is an essential part
of the software development process. Risk
management, contingency planning, and
issue tracking are all important techniques
that can be used to identify and mitigate

Page 35/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

potential risks associated with a project.
Risk management involves assessing the
likelihood of certain events occurring
during the course of a project and taking
steps to reduce their impact if they do
occur. Contingency planning involves
creating plans for how to respond in case
something unexpected does happen
during the course of a project. Issue
tracking helps ensure that any issues or
problems encountered during development
are addressed quickly and efficiently.

By using these techniques, it is possible to
anticipate potential problems before they
arise and take proactive measures to
prevent them from happening in the first
place. This can help save time, money,
and resources by avoiding costly delays or
rework due to unforeseen circumstances.
Additionally, having well-defined
processes for managing risk can help
create an environment where team

Page 36/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

members feel comfortable raising
concerns about potential issues early on
so that they can be addressed promptly.

Thank you for reading!

If you enjoyed this abstract, please share it
with your friends.

Page 37/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419sig-b734&url=https://books.kim

