pooksﬁkim

summaries for easy reading

Design Patterns: Elements of
Reusable Object-Oriented
Software

rd Helm, Ralph Johnson, John Vlissides


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419img-b735&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

Book summary & main ideas

MP3 version available on www.books.kim
Please feel free to copy & share this abstract

Summary:

Design Patterns: Elements of Reusable
Object-Oriented Software is a book written
by Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides. It was first
published in 1994 and has since become
one of the most influential books on
software engineering. The book provides
an introduction to object-oriented design
patterns and how they can be used to
create reusable software components.

The book begins with an overview of
object-oriented programming (OOP)
concepts such as classes, objects,
Inheritance, polymorphism and
encapsulation. It then introduces the
concept of design patterns which are

Page 2/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

recurring solutions to common problems
encountered when designing OOP
systems. The authors provide 23 different
design patterns that have been identified
from real world projects including
Creational Patterns (Abstract Factory,
Builder), Structural Patterns (Adapter,
Bridge), Behavioral Patterns (Command,
Interpreter) and Concurrency Patterns
(Monitor). Each pattern is described In
detail along with examples showing how it
can be applied.

The second part of the book focuses on
applying these patterns in practice. This
Includes topics such as refactoring existing
code for better maintainability; using
frameworks to reduce development time;
testing strategies for ensuring quality;
debugging techniques; performance
optimization tips; version control best
practices; documentation guidelines etc.

Page 3/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

Finally the authors discuss some
advanced topics related to OOP such as
distributed computing architectures like
CORBA or COM/DCOM; component
based development approaches like
JavaBeans or Enterprise JavaBeans etc.;
web services technologies like SOAP or
WSDL etc.

Overall Design Patterns: Elements of
Reusable Object-Oriented Software
provides a comprehensive guide for
developers looking to use object oriented
principles effectively when creating
software applications.</

Malin ideas:

#1. Strategy Pattern: The Strategy
Pattern defines a family of algorithms,
encapsulates each one, and makes
them interchangeable. This allows the
algorithm to be selected at runtime
depending on the situation. It also

Page 4/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

allows for the algorithms to be easily
changed without affecting the client
code.

The Strategy Pattern is a powerful tool for
designing flexible and extensible software.
It allows developers to define a family of
algorithms, encapsulate each one, and
make them interchangeable. This makes it
possible to select the appropriate
algorithm at runtime depending on the
situation. Furthermore, this pattern also
enables easy changes in algorithms
without affecting the client code.

The Strategy Pattern can be used in many
different scenarios where an application
needs to dynamically switch between
different behaviors or operations based on
user input or other conditions. For
example, if an application needs to sort
data differently depending on user
preferences or data type, then using the

Page 5/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

Strategy Pattern would allow for easily
swapping out sorting algorithms as
needed.

Overall, the Strategy Pattern provides a
great way of creating flexible and
extensible software that can adapt quickly
to changing requirements. By defining
multiple strategies within an application
and making them interchangeable at
runtime, developers are able to create
applications that are more robust and
easier to maintain over time.

#2. Observer Pattern: The Observer
Pattern defines a one-to-many
dependency between objects so that
when one object changes state, all of
Its dependents are notified and updated
automatically. This allows for a loosely
coupled system where objects can
Interact without being tightly coupled.

Page 6/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

The Observer Pattern is a powerful tool for
creating loosely coupled systems. It
defines a one-to-many dependency
between objects, so that when one object
changes state, all of its dependents are
notified and updated automatically. This
allows for an efficient way to keep multiple
objects in sync without having them tightly
coupled.

In the Observer Pattern, there is typically
one subject object which other dependent
objects observe. When the subject object
changes state, it notifies all of its
observers who then update themselves
accordingly. The observers can also
register and unregister with the subject as
needed.

The Observer Pattern is useful in many
different scenarios such as user interfaces
where multiple views need to be kept up to
date with each other or when data needs

Page 7/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

to be shared across multiple components
without tight coupling.

#3. Decorator Pattern: The Decorator
Pattern attaches additional
responsibilities to an object
dynamically. This allows for the
responsibilities of an object to be
modified without affecting the other
objects in the system.

The Decorator Pattern is a powerful tool
for adding functionality to an object without
having to modify the underlying code. It
allows developers to add new
responsibilities and features to existing
objects in a flexible way, while still
preserving the original objects interface.
This pattern can be used when there is a
need for additional behavior or state that
must be added dynamically at runtime.

The Decorator Pattern works by wrapping

Page 8/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

an existing class with another class which
adds extra functionality. The wrapper class
contains references to the original object
and delegates all method calls back to it,
while also providing its own
Implementation of certain methods if
needed. This allows developers to easily
extend the capabilities of an existing object
without having to rewrite any of its code.

The Decorator Pattern provides many
advantages over traditional
Inheritance-based approaches such as
Increased flexibility and reusabillity. By
using this pattern, developers are able to
quickly add new features or behaviors
without needing extensive modifications or
changes in their codebase.

#4.  Factory Method Pattern: The
Factory Method Pattern defines an
Interface for creating an object, but lets
subclasses decide which class to

Page 9/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

Instantiate. This allows for the creation
of objects to be delegated to
subclasses, which can be easily
changed without affecting the client
code.

The Factory Method Pattern is a creational
design pattern that provides an interface
for creating objects, while allowing
subclasses to decide which class to
Instantiate. This allows the client code to
be easily changed without affecting the
object creation process. By delegating the
responsibility of object creation to
subclasses, this pattern helps reduce
coupling between classes and makes it
easier to modify or extend existing code.

This pattern can be used in situations
where there are multiple implementations
of a particular type of object that need to
be created. For example, if you have
different types of cars that need to be

Page 10/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

created based on user input, then using
the Factory Method Pattern would allow
you create any type of car without having
to write separate code for each one. The
factory method also allows for easy
extensibility as new types of cars can
easily be added by simply adding a new
subclass.

#5.  Singleton Pattern: The Singleton
Pattern ensures that a class has only
one instance and provides a global
point of access to it. This allows for a
single instance of a class to be shared
across the system, which can be easily
accessed and modified.

The Singleton Pattern is a powerful design
pattern that ensures only one instance of a
class can exist at any given time. This
allows for the single instance to be shared
across the system, providing an easy way
to access and modify it. The Singleton

Page 11/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

Pattern also provides a global point of
access to this single instance, allowing
other classes or objects in the system to
easily interact with It.

Using the Singleton Pattern helps ensure
consistency throughout your application by
ensuring that all parts of your code are
using the same object. It also simplifies
memory management as there is no need
to create multiple instances of an object
when only one will suffice. Additionally,
since there is only ever one instance of a
class available, you can more easily
control how data flows through your
application.

When implementing the Singleton Pattern
In your codebase, its important to consider
thread safety and performance
implications. If multiple threads attempt to
access or modify the same singleton
Instance simultaneously, race conditions

Page 12/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

may occur which could lead to unexpected
results or errors. To prevent this from
happening, proper synchronization
technigues should be used when
accessing and modifying singletons.

#06. Command Pattern: The
Command Pattern encapsulates a
request as an object, allowing for the
parameters of the request to be easily
changed. This allows for requests to be
gueued or logged, and for the undoing
and redoing of operations.

The Command Pattern is a powerful tool
for creating flexible and extensible
applications. It allows requests to be
encapsulated as objects, allowing the
parameters of the request to be easily
changed. This makes it possible to queue
or log requests, and also enables undoing
and redoing operations.

Page 13/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

Using the Command Pattern can help
reduce code complexity by separating out
different parts of an application into distinct
objects that are responsible for handling
specific tasks. This helps keep code
organized and maintainable, making it
easier to debug problems or add new
features in the future.

The Command Pattern also provides a
way to decouple components from each
other, which can make applications more
robust when changes need to be made. By
using commands instead of direct calls
between components, developers can
ensure that any changes they make will
not affect other parts of their system.

#7. Adapter Pattern: The Adapter
Pattern converts the interface of a class
Into another interface that the client
expects. This allows for classes with
Incompatible interfaces to work

Page 14/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

together, and for existing classes to be
reused in new systems.

The Adapter Pattern is a powerful tool for
creating flexible and reusable code. It
allows developers to create classes with
Incompatible interfaces that can still work
together, as well as allowing existing
classes to be reused in new systems. This
pattern works by converting the interface
of one class into another interface that the
client expects. The adapter acts as a
bridge between two different objects,
allowing them to communicate without
having to modify either object.

This pattern is especially useful when
dealing with legacy code or third-party
libraries which may have an outdated or
iIncompatible interface. By using an
adapter, developers can easily integrate
these components into their own system
without needing to rewrite any of the

Page 15/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

existing code.

The Adapter Pattern also helps reduce
coupling between components by
providing a layer of abstraction between
them. This makes it easier for developers
to make changes and updates without
affecting other parts of the system.

#8. Facade Pattern: The Facade
Pattern provides a unified interface to a
set of interfaces in a subsystem. This
allows for a simpler interface to be
provided to the client, which hides the
complexity of the subsystem.

The Facade Pattern is a design pattern
that provides a unified interface to a set of
Interfaces in a subsystem. This allows for
the client to interact with the subsystem
through one simplified interface, rather
than having to deal with the complexity of
each individual component within it. By

Page 16/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

providing this single point of access,
clients can more easily use and
understand the functionality provided by
the subsystem.

The Facade Pattern also helps reduce
coupling between components within the
system. By hiding all but one interface
from view, clients are not exposed to any
unnecessary details about how those
components work together internally. This
reduces dependencies between different
parts of the system and makes it easier for
developers to make changes without
affecting other areas.

Finally, using this pattern can help improve
performance as well since only one call
needs to be made instead of multiple calls
when dealing with complex systems. This
simplifies code and makes it easier for
developers to maintain their applications
over time.

Page 17/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

#9. Template Method Pattern: The
Template Method Pattern defines the
skeleton of an algorithm in a method,
deferring some steps to subclasses.
This allows for the common parts of an
algorithm to be defined in a single
method, while allowing subclasses to
provide the implementation for the
steps that vary.

The Template Method Pattern is a
powerful tool for creating algorithms that
can be easily adapted to different
situations. It defines the skeleton of an
algorithm in a single method, allowing
subclasses to provide the implementation
for steps that vary. This allows developers
to create algorithms with common parts
defined in one place, while still providing
flexibility and customization through
subclass implementations.

Using this pattern helps reduce code

Page 18/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

duplication and makes it easier to maintain
complex algorithms. By defining the
structure of an algorithm in one place,
developers can quickly make changes or
add new features without having to rewrite
large sections of code. Additionally, by
separating out the varying parts into
separate classes, it becomes much
simpler to test each part individually.

Overall, the Template Method Pattern
provides a great way for developers to
create flexible and extensible algorithms
that are easy to maintain over time.

#10. Iterator Pattern: The lterator
Pattern provides a way to access the
elements of an aggregate object
sequentially without exposing its
underlying representation. This allows
for the elements of an aggregate object
to be accessed in a consistent manner,
without the client needing to know the

Page 19/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

[\ (I
books " kim
book summaries for easy reading

underlying structure of the object.

The Iterator Pattern is a powerful tool for
accessing the elements of an aggregate
object in a consistent manner. It allows
clients to access the elements of an
aggregate object without needing to know
Its underlying structure. This makes it
easier for clients to traverse and
manipulate collections of objects, as they
can do so without having to understand
how the collection is structured.

The pattern also provides flexibility when
dealing with different types of collections.
By using iterators, clients can easily switch
between different implementations or data
structures while still being able to access
their contents in a uniform way. This
means that code written using iterators will
be more reusable and maintainable than
code which relies on specific
Implementations.

Page 20/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

"

.. My o
books" kim
book summaries for easy reading

Finally, by abstracting away the details of
how an aggregate object is represented
Internally, iterator patterns make it easier
for developers to modify existing code or
add new features without breaking existing
functionality. This helps ensure that
applications remain robust and reliable
even after changes have been made.

Thank you for reading!

If you enjoyed this abstract, please share it
with your friends.

Bootes.teim

Page 21/21


https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419sig-b735&url=https://books.kim

