
Refactoring: Improving the
Design of Existing Code

By Martin Fowler

Page 1/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419img-b736&url=https://books.kim

Book summary & main ideas

MP3 version available on www.books.kim
Please feel free to copy & share this abstract

Summary:
Refactoring: Improving the Design of
Existing Code by Martin Fowler is a book
that provides guidance on how to improve
existing code. It explains why refactoring is
important, what it involves, and how to do
it effectively. The book begins with an
introduction to refactoring and its benefits.
It then goes into detail about different
types of refactorings such as Extract
Method, Rename Variable, Replace Temp
with Query, Move Method, and more. Each
type of refactoring is explained in depth so
readers can understand when and why
they should use them.

The book also covers topics such as
automated testing for refactorings; dealing

Page 2/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

with legacy code; using design patterns;
understanding object-oriented
programming principles; working with
databases; debugging techniques;
performance optimization strategies;
version control systems for managing
changes during development cycles; and
much more.

In addition to providing detailed
information on each topic discussed in the
book, Refactoring: Improving the Design of
Existing Code includes numerous
examples from real-world projects that
demonstrate how these concepts are
applied in practice. This makes it easier for
readers to understand the material
presented in the text.

Overall, this book offers comprehensive
coverage on all aspects related to
improving existing code through
refactoring techniques. It provides clear

Page 3/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

explanations along with practical examples
which make it an invaluable resource for
software developers who want to learn or
refine their skills in this area.</

Main ideas:
#1. Refactoring: Refactoring is the
process of improving the design of
existing code without changing its
behavior. It is a way to make code more
maintainable, readable, and extensible.

Refactoring is the process of improving the
design of existing code without changing
its behavior. It is a way to make code more
maintainable, readable, and extensible.
Refactoring can help reduce complexity in
software systems by restructuring existing
code so that it becomes easier to
understand and modify.
The goal of refactoring is to improve the
quality of an applications source code
without altering its external behavior. This

Page 4/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

means that any changes made during
refactoring should not affect how the
application works from a users
perspective. Instead, these changes are
focused on making sure that the
underlying structure and organization of
the source code are as efficient as
possible.
Refactoring involves breaking down
complex pieces of code into smaller
components or functions which can be
reused across different parts of an
application. By doing this, developers can
create cleaner and more organized
applications with fewer bugs and better
performance.
In addition to improving readability and
maintainability, refactoring also helps
ensure that applications remain up-to-date
with current best practices for coding
standards. This makes it easier for new
developers joining a project to quickly get
up-to-speed on how things work.

Page 5/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#2. Code Smells: Code smells are
indicators of potential problems in code
that can be addressed through
refactoring. They can be identified by
looking for patterns in the code that
suggest a need for improvement.

Code smells are indicators of potential
problems in code that can be addressed
through refactoring. They are not
necessarily errors, but rather signs that the
code could be improved to make it more
maintainable and efficient. Code smells
can manifest themselves in many different
ways, such as long methods, duplicate
code, large classes or complex control
flow. Identifying these patterns is an
important part of software development
and refactoring.

The process of identifying code smells
involves looking for common patterns in
the source code which suggest a need for

Page 6/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

improvement. This may involve examining
the structure of the program to identify
areas where there is too much complexity
or duplication; analyzing how data is used
throughout the system; or inspecting how
objects interact with each other. Once
identified, these issues can then be
addressed by making changes to improve
readability and reduce complexity.

Refactoring is an essential tool for
improving existing software systems and
addressing any underlying issues revealed
by code smells. Refactoring involves
restructuring existing source code without
changing its external behavior â€“ this
allows developers to improve their design
while preserving functionality. By applying
refactorings such as Extract Method or
Replace Conditional with Polymorphism,
developers can address specific problems
identified by their analysis of the source
code.

Page 7/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#3. Refactoring Patterns:
Refactoring patterns are a set of
techniques that can be used to improve
the design of existing code. They
provide a way to identify and address
code smells in a systematic way.

Refactoring patterns are an invaluable tool
for software developers. By providing a set
of techniques to identify and address code
smells, they can help improve the design
of existing code. Refactoring patterns
provide a way to systematically analyze
and refactor code in order to make it more
maintainable, readable, and efficient. They
also allow developers to quickly identify
areas that need improvement without
having to manually inspect every line of
code.

The book Refactoring: Improving the
Design of Existing Code by Martin Fowler
provides detailed guidance on how to use

Page 8/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

refactoring patterns effectively. It covers
topics such as identifying bad smells in
your code, understanding when and why
you should refactor, applying specific
refactoring techniques, testing your
changes after refactoring is complete, and
much more. This book is an essential
resource for any developer looking to
improve their coding skills.

#4. Refactoring Tools: Refactoring
tools are software programs that can be
used to automate the process of
refactoring. They can help to identify
code smells and suggest refactoring
patterns to address them.

Refactoring tools are software programs
that can be used to automate the process
of refactoring. They provide a way for
developers to quickly identify code smells
and suggest refactoring patterns to
address them. Refactoring tools can help

Page 9/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

reduce the amount of time spent manually
searching through code, as well as
reducing the risk of introducing bugs when
making changes.

These tools typically work by analyzing
source code and providing feedback on
potential areas where improvements could
be made. This feedback is usually
presented in an easy-to-understand
format, such as a list or graph, which
makes it easier for developers to
understand what needs to be done.
Additionally, some refactoring tools also
offer automated suggestions on how best
to improve the code.

Using these types of tools can save
significant amounts of time and effort when
compared with manual refactoring
processes. Furthermore, they often come
with built-in safety features that prevent
mistakes from being made during the

Page 10/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

process. As such, using a good quality
refactoring tool is highly recommended for
any developer looking to improve their
existing codebase.

#5. Refactoring Process: The
refactoring process involves identifying
code smells, applying refactoring
patterns, and testing the code to ensure
that the behavior has not changed.

The refactoring process involves
identifying code smells, applying
refactoring patterns, and testing the code
to ensure that the behavior has not
changed. Code smells are indicators of
potential problems in a programs design or
implementation. Refactoring patterns
provide solutions for improving the
structure of existing code without changing
its behavior. Once identified, these
patterns can be applied to improve
readability and maintainability.

Page 11/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Testing is an important part of the
refactoring process as it ensures that any
changes made do not alter the expected
behavior of the program. This is done by
running unit tests before and after each
change to make sure that no new bugs
have been introduced into the system.
Additionally, integration tests should be
run periodically throughout this process to
ensure that all components continue
working together correctly.

By following this process, developers can
restructure their programs while ensuring
they remain bug-free and maintainable
over time.

#6. Refactoring Benefits: Refactoring
can improve the maintainability,
readability, and extensibility of code. It
can also help to reduce the cost of
maintenance and development.

Page 12/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Refactoring can have a number of benefits
for code. It can improve the maintainability,
readability, and extensibility of existing
code. This makes it easier to understand
and modify the code in the future, reducing
the cost of maintenance and development.

By refactoring existing code, developers
are able to identify areas where
improvements can be made. This could
include restructuring methods or classes to
make them more efficient or readable.
Refactoring also helps reduce complexity
by removing redundant or unnecessary
elements from the codebase.

In addition, refactoring allows developers
to add new features without having to
rewrite large sections of their application.
By making small changes that dont affect
how an application works but do improve
its structure and design, developers are

Page 13/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

able to quickly add new functionality while
keeping their applications up-to-date with
modern coding standards.

#7. Refactoring Challenges:
Refactoring can be challenging due to
the complexity of the code and the
need to ensure that the behavior of the
code does not change.

Refactoring can be challenging due to the
complexity of the code and the need to
ensure that the behavior of the code does
not change. Refactoring involves
restructuring existing code without
changing its external behavior, which
requires a deep understanding of how all
parts of a system interact with each other.
It also requires careful planning and
testing in order to make sure that any
changes made do not introduce new bugs
or cause existing features to break.

Page 14/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

In addition, refactoring often involves
making significant changes to large
amounts of code, which can be
time-consuming and difficult. This is
especially true when dealing with legacy
systems where there may be little
documentation or understanding about
how different components work together.

Finally, refactoring can require significant
effort from developers as they must
understand both what needs to be
changed and why it needs to be changed
in order for their efforts to have an impact
on improving overall system design.

#8. Refactoring Strategies:
Refactoring strategies can be used to
identify and address code smells in a
systematic way. They can help to
reduce the complexity of the
refactoring process.

Page 15/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Refactoring strategies are a set of
techniques used to identify and address
code smells in an organized manner. By
breaking down the refactoring process into
smaller, more manageable steps,
developers can reduce complexity and
make it easier to understand what needs
to be done. Refactoring strategies can also
help ensure that changes made during the
refactoring process do not introduce new
bugs or cause existing ones to resurface.

Martin Fowlers book Refactoring:
Improving the Design of Existing Code
provides detailed guidance on how to use
refactoring strategies effectively. It covers
topics such as identifying code smells,
understanding when and why they should
be addressed, and applying appropriate
refactorings for each situation. The book
also includes examples of successful
refactorings from real-world projects.

Page 16/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#9. Refactoring Techniques:
Refactoring techniques are specific
methods that can be used to improve
the design of existing code. They can
be used to address code smells and
improve the maintainability of the code.

Refactoring techniques are a set of
specific methods that can be used to
improve the design of existing code. They
help address code smells, which are
indicators that something is wrong with the
code, and make it easier to maintain in the
long run. Refactoring techniques involve
restructuring existing code without
changing its behavior or functionality. This
means that refactoring does not add new
features or fix bugs; instead, it focuses on
improving the structure and readability of
existing code.

Martin Fowlers book Refactoring:
Improving the Design of Existing Code

Page 17/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

provides an excellent overview of
refactoring techniques. It covers topics
such as identifying bad smells in your
code, understanding how they affect your
program's performance and
maintainability, and applying various
refactorings to improve them. The book
also includes detailed examples for each
technique so you can see how they work
in practice.

By using these refactoring techniques
effectively, developers can ensure their
programs remain clean and well-structured
over time. This makes them easier to
understand for other developers who may
need to work on them later down the line.

#10. Refactoring Principles:
Refactoring principles are guidelines
that can be used to ensure that the
refactoring process is effective. They
can help to ensure that the code is

Page 18/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

improved without changing its
behavior.

Refactoring principles are essential for
ensuring that the refactoring process is
effective. They provide guidance on how to
improve code without changing its
behavior, and can help ensure that the
changes made are beneficial. The most
important principle of refactoring is to
make sure that any changes you make do
not break existing functionality or introduce
new bugs.

Another key principle of refactoring is to
focus on small, incremental improvements
rather than large-scale changes. This
helps reduce the risk of introducing errors
into your codebase and makes it easier to
identify potential problems with a change
before they become an issue.

Finally, when making changes during a

Page 19/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

refactor, its important to keep in mind the
overall design goals for your project.
Refactoring should be used as an
opportunity to improve readability and
maintainability while also improving
performance where possible.

#11. Refactoring Practices:
Refactoring practices are best practices
that can be used to ensure that the
refactoring process is effective. They
can help to ensure that the code is
improved without introducing new
bugs.

Refactoring practices are best practices
that can be used to ensure that the
refactoring process is effective. They
involve a set of techniques and strategies
for improving existing code without
introducing new bugs or breaking existing
functionality. Refactoring practices include
things like identifying code smells, using

Page 20/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

automated tools to detect potential
problems, writing unit tests before making
changes, and ensuring that all changes
are thoroughly tested.

When refactoring code, its important to
keep in mind the goal of improving
readability and maintainability while
preserving existing functionality. This
means taking into account factors such as
naming conventions, coding style
guidelines, design patterns, and other best
practices when making changes. It also
involves understanding how different parts
of the system interact with each other so
that any modifications dont break existing
features.

In addition to these general principles,
there are specific techniques for
refactoring code such as extracting
methods from large blocks of code or
replacing complex logic with simpler

Page 21/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

alternatives. These techniques should be
applied judiciously in order to avoid
introducing new bugs or creating
unnecessary complexity.

#12. Refactoring Toolsets:
Refactoring toolsets are collections of
tools that can be used to automate the
process of refactoring. They can help to
identify code smells and suggest
refactoring patterns to address them.

Refactoring toolsets are collections of tools
that can be used to automate the process
of refactoring. They provide a way for
developers to quickly identify code smells
and suggest refactoring patterns to
address them. Refactoring toolsets
typically include features such as
automated code analysis, source control
integration, and support for multiple
programming languages.

Page 22/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

These tools can help developers save time
by automating tedious tasks associated
with refactoring. For example, they can
detect duplicate or redundant code and
suggest ways to simplify it. Additionally,
they may offer suggestions on how best to
restructure existing code in order to
improve readability or performance.

In addition, some refactoring toolsets also
provide visualizations of the changes
made during the refactor process. This
helps developers better understand what
has been changed and why it was done so
that future modifications can be more
easily implemented.

#13. Refactoring Workflows:
Refactoring workflows are processes
that can be used to ensure that the
refactoring process is effective. They
can help to ensure that the code is
improved without introducing new

Page 23/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

bugs.

Refactoring workflows are processes that
can be used to ensure that the refactoring
process is effective. They involve breaking
down a codebase into smaller, more
manageable chunks and then making
changes to each of these chunks in order
to improve the overall design. This helps to
reduce complexity and make it easier for
developers to understand how the code
works.

The workflow should start with an analysis
of the existing codebase, followed by
identifying areas where improvements can
be made. Once identified, these areas
should be broken down into individual
tasks which can then be worked on one at
a time. Each task should have its own set
of tests which will help verify that any
changes made do not introduce new bugs
or regressions.

Page 24/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Once all tasks have been completed, they
should all be tested together as part of an
integration test suite. This will help ensure
that no unexpected interactions occur
between different parts of the system
when combined together. Finally, once
everything has been verified as working
correctly, it is important to document any
changes made so that future developers
know what was done and why.

#14. Refactoring Documentation:
Refactoring documentation is a set of
documents that can be used to track
the progress of the refactoring process.
They can help to ensure that the code
is improved without introducing new
bugs.

Refactoring documentation is a set of
documents that can be used to track the
progress of the refactoring process. They

Page 25/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

provide an overview of what changes have
been made, and why they were necessary.
This helps to ensure that any new code
introduced does not introduce bugs or
other issues.

The documents should include details
such as which classes and methods were
changed, how they were changed, and
why those changes were necessary. It
should also include information about any
tests that have been run on the code after
it was refactored, so that any potential
problems can be identified quickly.

Having this kind of documentation in place
makes it easier for developers to
understand how their code works and
make sure it is working correctly. It also
allows them to go back over previous
versions if needed, making debugging
much simpler.

Page 26/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#15. Refactoring Reviews:
Refactoring reviews are a way to
ensure that the refactoring process is
effective. They can help to identify
potential problems in the code and
suggest refactoring patterns to address
them.

Refactoring reviews are an important part
of the refactoring process. They provide a
way to ensure that the code is being
improved in a meaningful and effective
manner. During a refactoring review,
developers can identify potential problems
in the code and suggest refactoring
patterns to address them. This helps to
ensure that any changes made will be
beneficial for both the short-term and
long-term success of the project.

Martin Fowlers book Refactoring:
Improving the Design of Existing Code
provides detailed guidance on how to

Page 27/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

conduct successful refactoring reviews. It
outlines best practices for identifying areas
where improvements can be made, as well
as strategies for implementing those
changes effectively. Additionally, it offers
advice on how to evaluate whether or not
certain changes should be implemented.

Overall, conducting regular refactoring
reviews is essential for ensuring that
projects remain maintainable over time. By
taking advantage of this practice, teams
can make sure their codebase remains
up-to-date with modern standards while
also avoiding costly mistakes down the
line.

#16. Refactoring Metrics:
Refactoring metrics are measurements
that can be used to track the progress
of the refactoring process. They can
help to ensure that the code is
improved without introducing new

Page 28/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

bugs.

Refactoring metrics are an important tool
for tracking the progress of refactoring.
They provide a way to measure how
successful the process is, and can help
identify areas that need further
improvement. By measuring various
aspects of code quality, such as
readability, maintainability, complexity and
performance, refactoring metrics can be
used to ensure that changes made during
the refactoring process do not introduce
new bugs or reduce existing functionality.

The most common type of metric used in
refactoring is cyclomatic complexity. This
measures the number of independent
paths through a piece of code and helps
identify areas where there may be too
much complexity or duplication. Other
useful metrics include lines-of-code (LOC)
count which measures how many lines are

Page 29/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

needed to implement a feature; coupling
which looks at how closely related different
parts of code are; cohesion which looks at
how well related pieces fit together; and
fan-in/fan-out which examines
dependencies between classes.

By using these types of measurements it is
possible to track improvements over time
and make sure that any changes made
during the refactoring process have been
beneficial rather than detrimental.
Refactoring metrics also provide valuable
feedback on whether certain techniques
have been effective in improving code
quality.

#17. Refactoring Toolsets:
Refactoring toolsets are collections of
tools that can be used to automate the
process of refactoring. They can help to
identify code smells and suggest
refactoring patterns to address them.

Page 30/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Refactoring toolsets are collections of tools
that can be used to automate the process
of refactoring. They provide a way for
developers to quickly identify code smells
and suggest refactoring patterns to
address them. Refactoring toolsets
typically include features such as
automated code analysis, source control
integration, and support for multiple
programming languages.

These tools can help developers save time
by automating tedious tasks associated
with refactoring. For example, they can
detect duplicate or redundant code and
suggest ways to simplify it. Additionally,
they may offer suggestions on how best to
restructure existing code in order to
improve readability or performance.

Refactoring toolsets also allow developers
to track changes over time so that any
mistakes made during the refactor process

Page 31/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

can be easily identified and corrected. This
helps ensure that all changes are properly
documented and tested before being
deployed into production environments.

#18. Refactoring Workflows:
Refactoring workflows are processes
that can be used to ensure that the
refactoring process is effective. They
can help to ensure that the code is
improved without introducing new
bugs.

Refactoring workflows are processes that
can be used to ensure that the refactoring
process is effective. They involve breaking
down a codebase into smaller, more
manageable chunks and then making
changes to each of these chunks in order
to improve the overall design. This helps to
reduce complexity and make it easier for
developers to understand how the code
works.

Page 32/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

The workflow should start with an analysis
of the existing codebase, followed by
identifying areas where improvements can
be made. Once identified, these areas
should be broken down into individual
tasks which can then be worked on one at
a time. Each task should have its own set
of tests which will help verify that any
changes made do not introduce new bugs
or regressions.

Once all tasks have been completed, they
should all be tested together as part of an
integration test suite. This will help ensure
that no unexpected interactions occur
between different parts of the system
when combined together. Finally, once
everything has been verified as working
correctly, it's important to document any
changes made so future developers know
what was done and why.

Page 33/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#19. Refactoring Documentation:
Refactoring documentation is a set of
documents that can be used to track
the progress of the refactoring process.
They can help to ensure that the code
is improved without introducing new
bugs.

Refactoring documentation is a set of
documents that can be used to track the
progress of the refactoring process. These
documents provide an overview of the
codebase, including its structure and
design patterns, as well as any changes
made during refactoring. They also help to
identify potential areas for improvement
and ensure that all changes are properly
tested before being released into
production.

The documentation should include details
about how each change was implemented,
what tests were performed on it, and any

Page 34/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

issues encountered along the way. This
helps to ensure that no new bugs are
introduced while improving existing code.
Additionally, these records can be used in
future projects or when revisiting old
codebases.

By keeping detailed records throughout
the refactoring process, developers can
easily review their work and make sure
they have not missed anything important.
Refactoring documentation also serves as
a valuable resource for other developers
who may need to understand or modify
existing code in order to complete their
own tasks.

#20. Refactoring Reviews:
Refactoring reviews are a way to
ensure that the refactoring process is
effective. They can help to identify
potential problems in the code and
suggest refactoring patterns to address

Page 35/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

them.

Refactoring reviews are an important part
of the refactoring process. They provide a
way to ensure that the code is being
improved in a meaningful and effective
manner. During a refactoring review,
developers can identify potential problems
in the code and suggest refactoring
patterns to address them. This helps to
ensure that any changes made will be
beneficial for both the short-term and
long-term success of the project.

Martin Fowlers book Refactoring:
Improving the Design of Existing Code
provides detailed guidance on how to
conduct successful refactoring reviews. It
outlines best practices for identifying areas
where improvements can be made, as well
as strategies for implementing those
changes effectively. Additionally, it offers
advice on how to evaluate whether or not

Page 36/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

certain changes should be implemented.

Overall, conducting regular refactoring
reviews is essential for ensuring that
projects remain maintainable over time. By
taking advantage of this practice, teams
can make sure their codebase remains
up-to-date with modern standards while
also avoiding costly mistakes down the
line.

Thank you for reading!

If you enjoyed this abstract, please share it
with your friends.

Page 37/37

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419sig-b736&url=https://books.kim

