
Head First Design Patterns: A
Brain-Friendly Guide

By Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra

Page 1/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419img-b737&url=https://books.kim

Book summary & main ideas

MP3 version available on www.books.kim
Please feel free to copy & share this abstract

Summary:
Head First Design Patterns: A
Brain-Friendly Guide by Eric Freeman,
Elisabeth Robson, Bert Bates and Kathy
Sierra is a comprehensive guide to the
world of design patterns. It provides an
in-depth look at the principles behind
object-oriented programming and how they
can be applied to create better software
designs. The book covers topics such as
creational patterns, structural patterns,
behavioral patterns, concurrency patterns
and more. It also includes detailed
examples of each pattern with code
samples for readers to follow along.

The authors provide a unique approach to
learning about design patterns that

Page 2/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

focuses on understanding rather than
memorization. They use visual diagrams
and analogies throughout the book to help
explain complex concepts in simple terms.
Additionally, they include exercises at the
end of each chapter so readers can
practice what they have learned.

Head First Design Patterns is written for
both experienced developers who want to
learn more about design principles as well
as beginners who are just getting started
with object-oriented programming. The
authors provide clear explanations that
make it easy for anyone to understand
even if they don't have any prior
experience with coding or software
development.

Overall, Head First Design Patterns is an
excellent resource for anyone looking to
gain a deeper understanding of
object-oriented programming and design

Page 3/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

principles. With its engaging writing style
and helpful visuals, this book makes it
easy for readers of all levels to learn about
these important topics.</

Main ideas:
#1. Strategy Pattern: The Strategy
Pattern allows you to define a family of
algorithms, encapsulate each one, and
make them interchangeable. This
pattern enables you to select the
appropriate algorithm at runtime,
making your code more flexible and
extensible.

The Strategy Pattern is a powerful tool for
designing flexible and extensible code. It
allows you to define a family of algorithms,
encapsulate each one, and make them
interchangeable. This pattern enables you
to select the appropriate algorithm at
runtime, making your code more dynamic
and adaptable.

Page 4/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Using the Strategy Pattern can help
reduce complexity in your code by allowing
you to separate out different algorithms
into their own classes. This makes it easier
to maintain and extend your code as new
requirements arise. Additionally, this
pattern helps promote reusability since the
same strategy can be used across multiple
contexts.

When using the Strategy Pattern, its
important to consider how changes in one
part of your system might affect other
parts. For example, if an algorithm is
changed or removed from a particular
context then any dependent systems must
also be updated accordingly.

#2. Observer Pattern: The Observer
Pattern defines a one-to-many
dependency between objects, so that
when one object changes state, all of

Page 5/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

its dependents are notified and updated
automatically. This pattern is useful for
decoupling objects and for
implementing event-driven systems.

The Observer Pattern is a powerful tool for
creating loosely coupled systems. It
defines a one-to-many dependency
between objects, so that when one object
changes state, all of its dependents are
notified and updated automatically. This
pattern is useful for decoupling objects and
for implementing event-driven systems.

In the Observer Pattern, an observable
object (the subject) maintains a list of
observers which have registered to receive
notifications about changes in the subjects
state. When the subjects state changes, it
notifies each observer in turn by calling
their update() method with itself as an
argument. The observers can then query
the subject to find out what has changed.

Page 6/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

This pattern allows us to create flexible
architectures where components can be
added or removed without affecting other
parts of the system. It also makes it easier
to maintain code since we dont need to
manually keep track of dependencies
between different components.

#3. Decorator Pattern: The Decorator
Pattern allows you to dynamically add
new behavior to an existing object
without changing its class. This pattern
is useful for adding features to objects
without having to create subclasses for
each feature.

The Decorator Pattern is a powerful tool
for adding new behavior to an existing
object without changing its class. This
pattern allows you to add features to
objects without having to create
subclasses for each feature. It works by

Page 7/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

wrapping the original object in one or more
decorator classes, which can modify the
behavior of the original object while still
preserving its interface.

For example, if you have an existing class
that represents a car and you want to add
additional features such as air conditioning
or power windows, you could use the
Decorator Pattern instead of creating
separate subclasses for each feature. The
decorators would wrap around the car
class and provide additional functionality
while still preserving the interface of the
original car class.

The Decorator Pattern is also useful when
dealing with complex systems where it
may be difficult or impractical to extend
existing classes. By using this pattern,
developers can easily add new features
without having to make changes in
multiple places throughout their codebase.

Page 8/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#4. Factory Pattern: The Factory
Pattern is used to create objects
without having to specify the exact
class of the object that will be created.
This pattern is useful for creating
objects based on run-time information
or for decoupling code from the objects
it creates.

The Factory Pattern is a powerful tool for
creating objects without having to specify
the exact class of the object that will be
created. This pattern allows developers to
create objects based on run-time
information or decouple code from the
objects it creates. By using this pattern,
developers can easily switch out different
classes of objects at runtime depending on
their needs.

The Factory Pattern works by defining an
interface for creating an object and then
letting subclasses decide which class to

Page 9/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

instantiate. The factory method then uses
the subclass to create the desired object.
This way, clients can get new instances of
objects without knowing what type they are
getting or how they were created.

Using this pattern also helps reduce
coupling between components in a system
since each component only knows about
its own interface and not necessarily about
other components' interfaces. This makes
it easier to maintain and extend existing
systems as well as add new features with
minimal disruption.

#5. Singleton Pattern: The Singleton
Pattern ensures that a class has only
one instance and provides a global
point of access to it. This pattern is
useful for managing resources that are
shared by multiple objects.

The Singleton Pattern is a design pattern

Page 10/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

that ensures only one instance of a class
can exist at any given time. It provides a
global point of access to this single
instance, allowing other objects to interact
with it without having to create their own
instances. This pattern is useful for
managing resources that are shared by
multiple objects, such as databases or
network connections.

Using the Singleton Pattern helps ensure
that all objects have access to the same
resource and prevents them from creating
duplicate copies of it. This can help
improve performance and reduce memory
usage since there will be fewer instances
created in total. Additionally, using the
Singleton Pattern makes it easier for
developers to keep track of which object
has access to what resources.

When implementing the Singleton Pattern,
care must be taken not to introduce race

Page 11/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

conditions or deadlocks into your code.
Careful consideration should also be given
when deciding whether or not you need a
singleton in your application; if you dont
need one then avoid introducing
unnecessary complexity into your
codebase.

#6. Command Pattern: The
Command Pattern encapsulates a
request as an object, allowing you to
parameterize other objects with
different requests, queue or log
requests, and support undoable
operations. This pattern is useful for
implementing transactions and for
decoupling objects that invoke
operations from the objects that
actually perform them.

The Command Pattern is a powerful tool
for designing software applications. It
encapsulates a request as an object,

Page 12/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

allowing you to parameterize other objects
with different requests, queue or log
requests, and support undoable
operations. This pattern is useful for
implementing transactions and for
decoupling objects that invoke operations
from the objects that actually perform
them.

For example, if you have an application
where users can make changes to data
stored in a database, the Command
Pattern allows you to create commands
that represent each of these changes.
These commands can then be queued up
and executed at any time. Additionally,
since each command is represented by its
own object, its easy to add features such
as logging or undo/redo functionality.

The Command Pattern also helps reduce
coupling between classes by separating
the code responsible for invoking an

Page 13/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

operation from the code responsible for
performing it. This makes it easier to
modify existing code without having to
change all of the dependent classes.

#7. Adapter Pattern: The Adapter
Pattern converts the interface of a class
into another interface that the client
expects. This pattern is useful for
making classes with incompatible
interfaces work together.

The Adapter Pattern is a powerful tool for
making classes with incompatible
interfaces work together. It works by
converting the interface of one class into
another that the client expects. This allows
two classes to interact even if their original
interfaces are not compatible.

For example, lets say you have an
application that needs to communicate
with a legacy system. The legacy system

Page 14/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

has its own set of methods and data
structures which your application does not
understand. By using the Adapter Pattern,
you can create an adapter class which
translates between the two systems so
they can communicate effectively.

The Adapter Pattern is also useful when
dealing with third-party libraries or
frameworks that dont quite fit in with your
existing codebase. By creating an adapter
layer between them, you can make them
work together without having to rewrite
large portions of code.

#8. Facade Pattern: The Facade
Pattern provides a unified interface to a
set of interfaces in a subsystem. This
pattern is useful for simplifying
complex systems and for providing a
single point of access to the
subsystem.

Page 15/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

The Facade Pattern is a great way to
simplify complex systems and provide a
single point of access. It works by
providing an interface that hides the
complexity of the underlying subsystems,
allowing clients to interact with them in a
simpler manner. This pattern can be used
to reduce coupling between components,
making it easier for developers to maintain
and extend their codebase. Additionally,
this pattern can help improve performance
by reducing the number of calls required
when interacting with multiple subsystems.

The Facade Pattern is especially useful
when dealing with legacy systems or
large-scale applications where there are
many different components that need to be
interacted with. By creating a unified
interface for these components,
developers can easily manage interactions
without having to understand all the details
behind each components implementation.

Page 16/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

Furthermore, this pattern helps keep code
clean and organized since all interactions
occur through one central point.

#9. Template Method Pattern: The
Template Method Pattern defines the
skeleton of an algorithm in a method,
deferring some steps to subclasses.
This pattern is useful for implementing
the invariant parts of an algorithm once
and leaving it up to subclasses to
implement the behavior that can vary.

The Template Method Pattern is a
powerful tool for creating algorithms that
can be easily adapted to different
situations. It defines the skeleton of an
algorithm in a method, allowing subclasses
to provide their own implementation of
certain steps. This allows developers to
create code that is both flexible and
maintainable, as it ensures that the
invariant parts of an algorithm are

Page 17/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

implemented once and only need to be
changed if absolutely necessary.

This pattern is especially useful when
dealing with complex algorithms or
processes which may require multiple
iterations or have many variables. By
using the Template Method Pattern,
developers can ensure that all essential
steps are taken care of while leaving room
for customization by subclasses. This
makes it easier to keep track of changes
made over time and helps reduce bugs
caused by forgetting important steps.

Overall, the Template Method Pattern
provides a great way for developers to
create robust algorithms without having to
worry about implementing every single
step themselves. By relying on subclasses
for customizing behavior, this pattern
allows developers more flexibility while still
ensuring consistency across

Page 18/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

implementations.

#10. Iterator Pattern: The Iterator
Pattern provides a way to access the
elements of an aggregate object
sequentially without exposing its
underlying representation. This pattern
is useful for traversing a collection of
objects without having to know its
internal structure.

The Iterator Pattern is a powerful tool for
accessing the elements of an aggregate
object in a consistent and efficient manner.
It allows developers to traverse collections
without having to know their internal
structure, making it easier to work with
complex data structures. By using
iterators, developers can access each
element of the collection one at a time,
allowing them to perform operations on
individual elements or groups of elements
as needed. This pattern also makes it

Page 19/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

possible for multiple clients to access the
same collection simultaneously without
interfering with each other.

The Iterator Pattern provides several
advantages over traditional approaches
such as looping through all elements in a
collection manually. For example, by using
an iterator, developers can easily skip over
certain elements that they dont need or
are not interested in processing.
Additionally, this pattern helps reduce
code complexity since there is no need for
explicit loops or conditionals when
traversing collections.

Overall, the Iterator Pattern is an
invaluable tool for working with collections
efficiently and effectively. By providing
easy access to individual elements within
a collection while hiding its underlying
representation from clients, this pattern
simplifies development tasks significantly.

Page 20/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#11. Composite Pattern: The
Composite Pattern allows you to
compose objects into tree structures to
represent part-whole hierarchies. This
pattern is useful for representing
complex structures and for making it
easier to add new kinds of components.

The Composite Pattern is a powerful tool
for creating complex structures. It allows
you to compose objects into tree-like
hierarchies, which can represent
part-whole relationships between
components. This pattern makes it easier
to add new kinds of components and
manage the structure as a whole.

For example, if you have an application
that needs to display different types of
shapes on the screen, such as circles,
squares and triangles, then using the
Composite Pattern would allow you to
create a hierarchy where each shape is

Page 21/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

represented by its own object. You could
then easily add more shapes or modify
existing ones without having to rewrite any
code.

The Composite Pattern also helps with
managing complexity in large systems. By
breaking down complex tasks into smaller
parts that are organized in a hierarchical
structure, it becomes much easier to
understand how all the pieces fit together
and make changes when needed.

#12. State Pattern: The State Pattern
allows an object to alter its behavior
when its internal state changes. This
pattern is useful for implementing
state-dependent behavior and for
decoupling the implementation of
state-dependent behavior from the
object that has the behavior.

The State Pattern is a powerful tool for

Page 22/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

designing objects that can change their
behavior based on their internal state. By
using this pattern, the implementation of
state-dependent behavior can be
decoupled from the object itself, allowing
for greater flexibility and maintainability.
This makes it easier to add new states or
modify existing ones without having to
rewrite large portions of code.

At its core, the State Pattern involves
creating an interface which defines all
possible states and behaviors associated
with each state. Each concrete class
implementing this interface will define
specific behaviors for each state. The
object whose behavior needs to change
then holds a reference to one of these
concrete classes at any given time, thus
changing its own behavior accordingly.

This pattern is particularly useful when
dealing with complex systems where

Page 23/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

different parts need to interact in different
ways depending on certain conditions or
events. It also allows us to keep our code
DRY (Dont Repeat Yourself) by avoiding
duplication of logic across multiple
classes.

#13. Proxy Pattern: The Proxy
Pattern provides a surrogate or
placeholder for another object to
control access to it. This pattern is
useful for providing a level of
indirection between the client and the
object it accesses.

The Proxy Pattern is a useful tool for
controlling access to an object. It acts as a
surrogate or placeholder, allowing the
client to interact with the object without
having direct access to it. This pattern can
be used in situations where there are
security concerns, such as when
accessing sensitive data or resources that

Page 24/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

require authentication. It also provides a
level of indirection between the client and
the object, which can help reduce
complexity and improve performance.

For example, if you have an application
that needs to access a database but
doesnt want users directly interacting with
it, you could use a proxy pattern. The
proxy would act as an intermediary
between the user and the database,
providing authentication and authorization
services before allowing any requests
through.

The Proxy Pattern is also useful for
creating virtual objects that dont actually
exist yet but will eventually be created on
demand. For instance, if your application
needs to load large files from disk but
wants to avoid loading them until theyre
needed, you could create a proxy class
that represents those files so they appear

Page 25/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

available even though they havent been
loaded yet.

#14. Flyweight Pattern: The
Flyweight Pattern is used to minimize
memory usage or computational
expenses by sharing as much data as
possible with other similar objects. This
pattern is useful for reducing the
number of objects that need to be
created and for improving performance.

The Flyweight Pattern is a useful tool for
optimizing memory usage and
computational expenses. It works by
sharing as much data as possible between
similar objects, reducing the number of
objects that need to be created and
improving performance. This pattern can
be used in many different scenarios, such
as when dealing with large datasets or
when creating complex graphical user
interfaces.

Page 26/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

When using the Flyweight Pattern, its
important to consider how much data
needs to be shared between objects. If too
little is shared, then there wont be any
benefit from using this pattern; however if
too much is shared then it could lead to
unnecessary complexity or even security
risks. Additionally, care should also be
taken to ensure that the data being shared
remains consistent across all instances of
an object.

In summary, the Flyweight Pattern can
provide significant benefits in terms of
memory usage and performance
optimization when used correctly. By
carefully considering which pieces of data
should be shared between objects and
ensuring consistency across all instances
of an object type, developers can take
advantage of this powerful design pattern.

Page 27/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

#15. Bridge Pattern: The Bridge
Pattern decouples an abstraction from
its implementation, allowing the two to
vary independently. This pattern is
useful for creating objects that can be
easily extended and for making it easier
to switch between different
implementations.

The Bridge Pattern is a powerful tool for
software developers, as it allows them to
separate an abstraction from its
implementation. This decoupling of the two
components makes it easier to extend
objects and switch between different
implementations. By using this pattern,
developers can create more flexible and
maintainable code that is better suited for
long-term use.

The Bridge Pattern works by creating an
interface or abstract class that defines the
methods used in both the abstraction and

Page 28/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

its implementation. The concrete classes
then implement these methods according
to their own logic. This separation of
concerns allows each component to be
modified independently without affecting
the other.

In addition, this pattern also helps reduce
complexity by allowing developers to focus
on one aspect at a time when making
changes or adding new features. For
example, if they need to modify how
something works in the abstraction layer,
they can do so without worrying about how
it will affect the underlying implementation.

#16. Builder Pattern: The Builder
Pattern separates the construction of a
complex object from its representation,
allowing the same construction
process to create different
representations. This pattern is useful
for constructing complex objects

Page 29/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

step-by-step.

The Builder Pattern is a powerful design
pattern that allows for the construction of
complex objects in an organized and
efficient manner. It separates the
construction process from the
representation of the object, allowing for
different representations to be created
using the same construction process. This
makes it possible to create complex
objects step-by-step without having to
worry about how they will look when
completed.

The Builder Pattern is especially useful
when dealing with large or complicated
objects that require multiple steps in order
to construct them correctly. By breaking
down these steps into smaller chunks, it
becomes easier to manage and maintain
code related to constructing such objects.
Additionally, this pattern can help reduce

Page 30/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

errors by ensuring that all necessary
components are included during each step
of the building process.

Overall, The Builder Pattern provides a
great way for developers to create
complex objects quickly and efficiently
while also reducing potential errors
associated with manual coding processes.

#17. Interpreter Pattern: The
Interpreter Pattern is used to evaluate
sentences in a language. This pattern is
useful for implementing
domain-specific languages and for
providing a way to evaluate
expressions without having to write a
parser.

The Interpreter Pattern is a behavioral
design pattern used to evaluate sentences
in a language. This pattern provides an
efficient way of evaluating expressions

Page 31/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

without having to write a parser. It can be
used for implementing domain-specific
languages, allowing developers to create
their own custom syntax and semantics
that are tailored specifically for the
problem at hand.

The Interpreter Pattern works by breaking
down complex expressions into simpler
parts which can then be evaluated one at
a time. Each part is represented as an
object with its own set of rules and
behavior, making it easier to understand
how the expression should be interpreted.
The objects are combined together using
composition or inheritance, depending on
the complexity of the expression being
evaluated.

This pattern has been widely adopted in
many programming languages such as
Java, C#, Python and JavaScript due to its
flexibility and ease of use. It allows

Page 32/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

developers to quickly implement their own
custom syntaxes without having to worry
about writing complicated parsers from
scratch.

#18. Chain of Responsibility Pattern:
The Chain of Responsibility Pattern
allows a request to be handled by a
chain of objects. This pattern is useful
for decoupling the sender of a request
from its receiver and for allowing the
request to be handled by any object in
the chain.

The Chain of Responsibility Pattern is a
powerful design pattern that allows for the
decoupling of the sender and receiver of a
request. It works by creating a chain of
objects, each with its own responsibility to
handle the request. The first object in the
chain will attempt to process the request,
and if it cannot do so, it will pass it on to
the next object in line. This continues until

Page 33/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

either an object can successfully process
the request or all objects have been
exhausted.

This pattern is useful when there are
multiple potential handlers for a given
request and you dont want to hard-code
which handler should be used. By using
this pattern, you can create flexible
systems where new handlers can easily be
added without having to modify existing
code.

It also helps reduce coupling between
components since they no longer need
direct knowledge about each others
implementation details; instead they just
need knowledge about how to interact with
their respective part of the chain.

#19. Mediator Pattern: The Mediator
Pattern defines an object that
encapsulates how a set of objects

Page 34/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

interact. This pattern is useful for
reducing coupling between objects and
for making it easier to change the way
they interact.

The Mediator Pattern is a powerful tool for
designing software systems. It allows
developers to create loosely coupled
objects that can interact with each other
without having to know the details of how
they are implemented. This reduces
complexity and makes it easier to maintain
and extend the system in the future.

At its core, the Mediator Pattern defines an
object (the mediator) which encapsulates
how a set of objects interact. The mediator
acts as an intermediary between these
objects, allowing them to communicate
without knowing about each others
implementation details. This helps reduce
coupling between components, making it
easier to change or add new functionality

Page 35/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

in the future.

The Mediator Pattern also provides a way
for different parts of a system to be
decoupled from one another while still
being able to communicate effectively. By
using this pattern, developers can create
more flexible and extensible systems that
are easier to maintain over time.

#20. Memento Pattern: The Memento
Pattern provides the ability to restore
an object to its previous state. This
pattern is useful for implementing
undoable operations and for providing
a way to capture and restore the
internal state of an object without
violating encapsulation.

The Memento Pattern is a powerful tool for
implementing undoable operations and
preserving the internal state of an object. It
allows developers to capture and restore

Page 36/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

the state of an object without violating
encapsulation, meaning that no other class
has access to the internals of the object
being restored. This pattern can be used in
situations where it is necessary to revert
back to a previous version or configuration
of an object.

The Memento Pattern works by creating a
"memento" which stores all relevant
information about the current state of an
object. When changes are made, this
memento can be used as a reference point
from which any number of different
versions can be created. The original
version remains unchanged while new
versions are created based on
modifications made since then.

This pattern provides great flexibility when
dealing with complex objects that may
need to have their states changed multiple
times over time. By using mementos,

Page 37/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim

developers can easily rollback changes if
needed without having to manually track
each change or write code specifically for
reverting back.

Thank you for reading!

If you enjoyed this abstract, please share it
with your friends.

Page 38/38

https://books.kim/_coho_ref.php?ref=mpdf-v20230419-toplogo&url=https://books.kim
https://books.kim/_coho_ref.php?ref=mpdf230419sig-b737&url=https://books.kim

